Unambiguous observation of blocked states reveals altered, blocker-induced, cardiac ryanodine receptor gating
نویسندگان
چکیده
The flow of ions through membrane channels is precisely regulated by gates. The architecture and function of these elements have been studied extensively, shedding light on the mechanisms underlying gating. Recent investigations have focused on ion occupancy of the channel's selectivity filter and its ability to alter gating, with most studies involving prokaryotic K+ channels. Some studies used large quaternary ammonium blocker molecules to examine the effects of altered ionic flux on gating. However, the absence of blocking events that are visibly distinct from closing events in K+ channels makes unambiguous interpretation of data from single channel recordings difficult. In this study, the large K+ conductance of the RyR2 channel permits direct observation of blocking events as distinct subconductance states and for the first time demonstrates the differential effects of blocker molecules on channel gating. This experimental platform provides valuable insights into mechanisms of blocker-induced modulation of ion channel gating.
منابع مشابه
Ryanodine receptor gating controls generation of diastolic calcium waves in cardiac myocytes
The role of cardiac ryanodine receptor (RyR) gating in the initiation and propagation of calcium waves was investigated using a mathematical model comprising a stochastic description of RyR gating and a deterministic description of calcium diffusion and sequestration. We used a one-dimensional array of equidistantly spaced RyR clusters, representing the confocal scanning line, to simulate the f...
متن کاملA mechanistic description of gating of the human cardiac ryanodine receptor in a regulated minimal environment
Cardiac muscle contraction, triggered by the action potential, is mediated by the release of Ca(2+) from the sarcoplasmic reticulum through ryanodine receptor (RyR)2 channels. In situ, RyR2 gating is modulated by numerous physiological and pharmacological agents, and altered RyR2 function underlies the occurrence of arrhythmias in both inherited and acquired diseases. To understand fully the me...
متن کاملAn Anionic Ryanoid, 10-O-succinoylryanodol, Provides Insights into the Mechanisms Governing the Interaction of Ryanoids and the Subsequent Altered Function of Ryanodine-receptor Channels
We have investigated the interactions of a novel anionic ryanoid, 10-O-succinoylryanodol, with individual mammalian cardiac muscle ryanodine receptor channels under voltage clamp conditions. As is the case for all ryanoids so far examined, the interaction of 10-O-succinoylryanodol with an individual RyR channel produces profound alterations in both channel gating and rates of ion translocation....
متن کاملMaximum phosphorylation of the cardiac ryanodine receptor at serine-2809 by protein kinase a produces unique modifications to channel gating and conductance not observed at lower levels of phosphorylation.
It is suggested that protein kinase A (PKA)-dependent phosphorylation of cardiac ryanodine receptors (RyR2) is linked to the development of heart failure and the generation of fatal cardiac arrhythmias. It is also suggested that RyR2 is phosphorylated to 75% of maximum levels in heart failure resulting in leaky, unregulated channels gating in subconductance states. We now demonstrate that this ...
متن کاملRole of coupled gating between cardiac ryanodine receptors in the genesis of triggered arrhythmias.
Mutations in the ryanodine receptor (RyR) have been linked to exercise-induced sudden cardiac death. However, the precise sequence of events linking RyR channel mutations to a whole heart arrhythmia is not completely understood. In this paper, we apply a detailed, mathematical model of subcellular calcium (Ca) release, coupled to membrane voltage, to study how defective RyR channels can induce ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016